Algoritmos supervisados y de ensamble con python

Algoritmos supervisados y de ensamble con python

Informática

Por Leonardo Contreras, Héctor Fuentes, José Rodriguez

Formato: PDF  
Disponibilidad: Descarga inmediata

Sinopsis

El objetivo principal de este libro es proporcionar una visión general sobre cómo el Machine learning y sus técnicas pueden aplicarse para predecir variables numéricas o categóricas en diversos campos del conocimiento.  Además, aborda temas clave para aquellos que desean realizar trabajos o investigaciones que impliquen el análisis de datos, sin tener conocimientos sobre la implementación de algoritmos de clasificación o regresión. Este texto ofrece una explicación detallada de las técnicas y algoritmos de Machine learning, acompañados de ejemplos de código en Jupyter (Python), que permiten a los lectores sumergirse en este fascinante campo.  Guiará al lector a través de pasos sucesivos y precisos para construir modelos de predicción de variables, ya sean numéricas o categóricas. Es importante señalar que, si bien algunos contenidos pueden parecer similares a los disponibles en blogs o en internet, este libro ofrece una guía completa y estructurada para comprender y aplicar eficazmente las técnicas de Machine learning.

José Rodriguez